Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations

نویسندگان

  • D. Steven Mackey
  • Niloufer Mackey
  • Christian Mehl
  • Volker Mehrmann
چکیده

Many applications give rise to nonlinear eigenvalue problems with an underlying structured matrix polynomial. In this paper several useful classes of structured polynomial (e.g., palindromic, even, odd) are identified and the relationships between them explored. A special class of linearizations that reflect the structure of these polynomials, and therefore preserve symmetries in their spectra, is introduced and investigated. We analyze the existence and uniqueness of such linearizations, and show how they may be systematically constructed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palindromic Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations

Palindromic polynomial eigenvalue problems and related classes of structured eigenvalue problems are considered. These structures generalize the concepts of symplectic and Hamiltonian matrices to matrix polynomials. We discuss several applications where these matrix polynomials arise, and show how linearizations can be derived that reflect the structure of all these structured matrix polynomial...

متن کامل

Structured eigenvalue condition numbers and linearizations for matrix polynomials

This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the penci...

متن کامل

Trimmed linearizations for structured matrix polynomials

We discuss the eigenvalue problem for general and structured matrix polynomials which may be singular and may have eigenvalues at infinity. We derive condensed forms that allow (partial) deflation of the infinite eigenvalue and singular structure of the matrix polynomial. The remaining reduced order staircase form leads to new types of linearizations which determine the finite eigenvalues and c...

متن کامل

Backward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization

One of the most frequently used techniques to solve polynomial eigenvalue problems is linearization, in which the polynomial eigenvalue problem is turned into an equivalent linear eigenvalue problem with the same eigenvalues, and with easily recoverable eigenvectors. The eigenvalues and eigenvectors of the linearization are usually computed using a backward stable solver such as the QZ algorith...

متن کامل

Vector Spaces of Linearizations for Matrix Polynomials

The classical approach to investigating polynomial eigenvalue problems is linearization, where the polynomial is converted into a larger matrix pencil with the same eigenvalues. For any polynomial there are infinitely many linearizations with widely varying properties, but in practice the companion forms are typically used. However, these companion forms are not always entirely satisfactory, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006